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ARTICLE INFO ABSTRACT

Maintaining free chlorine (FC) residual at appropriate pH values is a control approach used to prevent pathogen
cross-contamination during tomato dump tank handling and fresh-cut produce washing operations. Oxidation
reduction potential (ORP) is a rapid measurement of oxidant-based sanitizer strength, and has been used to
estimate FC residual. However, factors, in addition to FC and pH, which influence ORP are not fully understood.
This study examined the relationship between ORP and FC under chlorine demand (CLD) free conditions and
during fresh produce washing. An equation predictive of FC was developed in the form logFC = f(ORP, ORP?,
ORP.pH). A good correlation between ORP and logFC was maintained when other variables changed, but the
resulting ORP-logFC curve changed (slope, intercept). A decrease in pH or temperature led to an increase in ORP.
Using tap water to wash the produce instead of distilled water significantly changed the ORP. For different types
of tested produce, i.e., fresh-cut carrot, onion, romaine and iceberg lettuce, and for whole tomatoes, increasing
the product-to-water ratio (i.e., increasing the organics transferred into the water) led to a decrease in ORP for a
specific FC residual. The choice of acidulant during washing also influenced ORP. Overall, the correlation of ORP
with logFC is more reliable at the lower end (5 mg/L FC) than at the higher end (100 mg/L FC) of the FC range
used in fresh produce washing. However, since the ORP in fresh produce wash water is affected significantly in
multiple ways by the wash water and process conditions, the predicted FC values with ORP under certain fresh-
cut produce washing conditions cannot be generalized for other conditions.
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1. Introduction

In fresh produce processing or packaging, washing is used for re-
moval of dirt from, transport of, and disinfection of the produce.
Disinfection is mostly done by adding chlorine (mostly dosed in the
form of sodium hypochlorite) to the water that contacts the produce.
This disinfection process can remove microorganisms from the produce
surface to some degree, but disinfection is limited to about 1-2 log. In
the water on the other hand, the microorganisms do not receive pro-
tection from the produce (although microbial clumping and particle
association can provide some protection), which makes killing micro-
organisms in the water much more efficient. Even though elimination of
pathogens from produce surfaces cannot be fully achieved with water
disinfection, maintaining a sufficiently high water disinfectant
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concentration in the wash water is needed to limit or eliminate cross-
contamination of pathogens among produce, and as such avoid
spreading of the pathogen to more crops and potentially more con-
sumers (Suslow, 2004; Gil et al., 2009; Van Haute et al., 2015; Gombas
et al., 2017).

Chlorine over-dosing (in combination with a pH below 4.5) will lead
to chlorine off-gassing in the work space as well as increased production
of carcinogenic by-products in the presence of organics in the wash
water (Van Haute et al., 2013). In addition, as chlorate is formed during
storage of sodium hypochlorite, increased chlorine dosing during the
washing process leads to accumulation of chlorate in the wash water
(Stanford et al., 2011). As chlorate is no longer allowed as pesticide in
the European Union, introduction of chlorate in the food chain due to
excessive chlorination is considered a potential issue (Gil et al., 2016;
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Nestlé, 2017). Chlorine under-dosing on the other hand can increase
food safety risks due to insufficient protection from pathogen cross-
contamination via the wash water. Chlorine is consumed by organics
introduced into the water during produce washing (Nou and Luo, 2010;
Luo et al., 2011; Van Haute et al., 2013). Ammonia reacts very rapidly
with chlorine, but there is very little ammonia present in fresh produce
wash water as degradation of N-containing organics has not yet set in
during washing (Van Haute et al., 2013). Therefore, an easy-to-use
technology for continuously measuring the FC residual is of great in-
terest for the fresh produce processing industry.

The ORP is a measurement of the tendency of a chemical species to
acquire electrons. The potential, measured using an ORP electrode, is
influenced by all the redox reactions that occur at the electrode surface.
As such, the ORP in a produce wash operation is a mixed potential that
is usually impossible to relate to one particular redox reaction (White,
2010). However, in some systems the ORP is dominated by one reaction
of interest, thereby providing useful information about that redox re-
action, even though the signal is fundamentally semi-quantitative. In-
formation about the presence of strong oxidants/reductants can be
acquired in this way, because of the strong oxidizing/reducing prop-
erties of these chemicals. Thus, ORP has been used to estimate the
presence of free chlorine in water (White, 2010). Limitations to the
usage of ORP for chlorine measurement is the slow response time and
the non-linear response of ORP to free chlorine (Hoorfar, 2014). The
use of ORP for measuring free chlorine during the washing of fresh
produce has been described in some tomato packing houses (Tomas-
Callejas et al., 2012; Zhou et al., 2014b), and fresh-cut lettuce opera-
tions (Fu et al., 2018; Lépez-Galvez et al., 2019).

There are some clear practical benefits to using ORP. The probe can
be put straight into the wash water. There is no need for tapping from
the flow of water and passing it through a tubing system, adding re-
agents and doing a titrimetric or spectrophotometric analysis on the
water sample, which is the case in automated N,N-diethyl-p-phenyle-
nediamine (DPD) method devices. In addition, ORP is a voltage mea-
surement and as such easy to be used as a signal for communicating
with the pump of a dosing system in a feed-back loop.

In the early editions of the industry food safety guidelines in the US,
150 mg/L free chlorine at pH 6.5, or an ORP of 650 mV in wash tanks
were used as control measures to prevent pathogen cross-contamination
(FTEC, 2006; UFPA, 2008) based on scientific findings available then.
With the advancement in science, the industry has recently updated
their food safety standard, changing ORP requirement from previously
650 mV to 850 mV (UFPA, 2018). However, most of the scientific stu-
dies evaluating pathogen cross-contamination use only free chlorine
and pH (Luo et al., 2011; Gereffi et al., 2015; Sreedharan et al., 2017),
while many tomato packers and fresh-cut processors use ORP to gauge
their sanitizer strength. Thus, a formula that allows the conversion
between ORP, FC, and pH is highly desirable. Thus, this study was
designed to address these critical data gaps. Specifically, the main ob-
jectives of this study are to i) evaluate the relationship between ORP
and FC under ideal conditions, i.e., in chlorine demand (CLD) free
water, ii) observe the changes that occur to the ORP-FC relationship
under the conditions of tomato and fresh-cut leafy vegetable water
(water source, organic matter, acidulant).

2. Materials and methods
2.1. Production of fresh produce wash water

Carrots (Daucus carota L. subsp. sativus), onions (Allium cepa L.),
romaine and iceberg lettuce (Lactuca sativa L.) were purchased from a
local wholesale market in Jessup, MD, USA, and stored at 4 °C for 24 h
before processing. Root hairs of carrots were manually removed.
Onions were peeled and de-cored in the packing house and were
shredded without additional preparation. Lettuce was prepared by
trimming the leaf edges and removing the stems (Luo, 2007). The
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vegetables were shredded into 0.32 cm width pieces at a rate of 1kg
min ! using a commercial vegetable cutter (Nichimo Seven Chefs ECD-
302, Tokyo, Japan). The lettuce wash water was made by consecutively
washing 10 batches of 800 g in 10 L deionized (DI) water for 1 min and
the carrot and onion wash water by washing 5 batches of 800 g in 10L
DI water for 1 min. The wash waters were stored at —80 °C until use.

Tomato (Solanum lycopersicum) wash water was made with tomatoes
(including incidental leaf and stem debris), harvested in and shipped
from Florida. Wash water was made by washing 20 kg of grape toma-
toes plus debris in 20L of tap water or DI water for 30 min.
Additionally, sampling of tomato wash water was done in a tomato
packinghouse in Florida.

2.2. Experimental design

The studied variables of influence were FC concentration, tem-
perature, pH, used acidulant and the influence of the water source and
the organics transferred to the water due to washing of produce.

Experiments in DI water were performed to assess the influence of
FC, temperature (T), pH and acidulant on the ORP. The influence of pH
on ORP was studied by measuring the ORP for FC residuals in the range
0.2-60 mg/L (0, 0.24, 0.47, 0.94, 1.88, 3.75, 7.5, 15, 30, 60 mg/L) and
this in the pH range 3-9 (studied in half pH increments) in DI water at
25 * 2 °C, for FC residuals in the range of 0-200 mg/L. The relation-
ship between the FC residual and ORP, and the influence of T on that
relationship, were studied at pH 6.5 in distilled water at 25 *+ 2 °C and
4 + 2°C and for free chlorine residuals in the range 0.2-200 mg/L. The
wash water was kept cool with an ice mantle around the reaction
container. For the influence of acidulant on ORP during chlorination,
HCI (Fluka, USA), phosphoric acid (Mallinckrodt Chemicals, USA), ci-
tric acid (VWR, USA), and T-128 (SmartWash® Systems) were compared
at pH 6.5 in DI water at 25 + 2 °C. The T-128 is mainly composed of
phosphoric acid and propylene glycol (Lemons and Taylor Fresh Food,
Inc., 2009; Shen et al., 2012). Even though citric acid is a regularly used
acidulant in fresh produce washing, it cannot be recommended as it has
inherent CLD and results in production of chlorinated organic disin-
fection by-products (Fan and Sokorai, 2015).

Experiments in fresh-cut produce wash waters (carrots, onions, ro-
maine and iceberg lettuce) were performed to assess the influence of
the organics, here expressed as CLD and chemical oxygen demand
(COD). The fresh-cut produce wash water was produced with DI water,
to only consider the influence of the added organics from the plant
matter. The iceberg fresh-cut produce wash water was diluted in DI
water by 2, 4 and 16 times in order to study the effect of CLD and COD
on the ORP. The influence of the fresh-cut wash water on the ORP was
studied at pH 6.5 for FC residuals in the range of 0 to 100 mg/L at
4 + 2°C.

Experiments in tomato wash water were performed as a case for
whole produce washing. Tomato wash water was chosen because the
tomato industry is interested in the use of ORP. In addition, tomatoes
are a risk product for Salmonella in the USA since 15 multistate out-
breaks are attributed to the consumption of raw tomatoes during
1990-2010, and all of the outbreaks were caused by Salmonella enterica
serotypes (Bennett et al., 2015). Tomato wash water was made in tap
water, to simulate the wash water as in industrial practice. In addition,
the wash water was made in DI water to compare the effect of the water
source (DI water or tap water) on the ORP. For tomato wash water
experiments the water was kept at 25 * 2 °C, because during industrial
tomato washing, the water is kept warmer than the tomatoes to avoid
possibility of infiltration of water into the tomato pores (UFPA, 2008).
The influence of the organic load of the wash water was studied at pH
6.5 by diluting tomato wash water with tap water to 2/3, 1/3 and 1/8
of the original concentration of the wash water, and studying the ORP-
FC relationship in the range of 10-150 mg/L FC. This high range was
used because the tomato packaging industry tends to use higher FC
residuals during washing than the fresh-cut produce industry, making
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low chlorine residuals less relevant.
2.3. Setup of the experiments

The water (DI, tap or produce wash water), was transferred to a
beaker and stirred magnetically (VMS-C7, VWR, USA). A larger beaker
with ice water was used to keep the temperature of the prepared wash
water at 4 + 2°C for those experiments that required it; other ex-
periments were performed at 25 = 2°C.

The pH, temperature (both with SevenEasy, Mettler Toledo, USA),
and ORP were measured in the wash water, ORP was measured using
two ORPTestr 10 devices (double junction Pt electrode, Oakton
Instruments, IL, USA) and averaging the measurements of both meters
(10 mV average difference between both the meters). The ORP meters
were calibrated before each experiment using ORP standard solution
(Orion, Thermo Fisher Scientific, USA, absolute value of 220mV at
25 °C, 430 mV versus Standard Hydrogen Electrode). The CLD, i.e., the
amount of free chlorine consumed by the water matrix constituents,
was determined as described by Van Haute et al. (2018). To char-
acterize the tap water, conductivity was determined with a conductivity
meter (135A, Thermo Orion, Germany), as well as the pH, COD, and
alkalinity. The alkalinity was determined with acid titration. COD was
measured according to the small-scale sealed-tube method (HR COD
digestion vials, Hach, CO).

Sodium hypochlorite (Clorox 8.25% sodium hypochlorite, Clorox
Professional Products Company, USA) was added to chlorinate the wash
water. The pH was maintained at the desired level by using HCI (1 mol/
L or 0.1 mol/L) and NaOH (1 mol/L or 0.1 mol/L), except in experi-
ments where the acidulant was studied, in which case phosphoric acid
(1.5 mol/L or 0.15mol/L), T-128 (10 v/v %), and citric acid (10 m/v %)
were used as acidulant. The FC and total chlorine (TC) were measured
by the DPD method (Eaton and Franson, 2005). Combined chlorine
(CC) was calculated as the difference between TC and FC. The ORP, pH
and temperature electrodes were immersed in the water during the
experiment. The pH was continuously measured and data were re-
corded when pH stabilized. When chlorine was dosed and pH adjusted
to the correct value, a 2 min period was allowed for stabilization of the
ORP signal, after which the FC residual was measured and the ORP
value at that moment was recorded, thus providing a measured linkage
between ORP and FC at distinct pH values. Subsequently, additional
sodium hypochlorite was dosed to increase the FC, pH was adjusted,
and the above steps were repeated. Tomato packinghouse water was
sampled during processing, a 2 min period was allowed for stabilization
of the ORP signal, after which the FC residual was measured and the
ORP value was recorded.

An exception to manual FC dosing was done when studying the
formation of CC during chlorination of fresh produce wash water and
the influence of CC on the ORP, where a membrane pump (IP31,
Duramat Schutzart, Belgium) was used for dosing FC at a constant rate
(1.74 mg L~ ! min!). FC, TC, ORP, pH and temperature were measured
at set intervals and pH was continuously adjusted to 6.5 with HCI
(0.1 mol/L). No 2 min waiting period for stabilization of the ORP signal
was applied here because of the influx of FC at a constant rate and the
continuous pH adjustment.

2.4. Statistics

Data was handled with Excel (Microsoft). Use of R-square change F-
test and Analysis of Covariance (ANCOVA) were conducted with
XLSTAT (Addinsoft) and R 3.4.4. (R-foundation) respectively. R-square
change F-test was used to assess whether the relationship between ORP
and the logarithm of FC (logarithm with base 10, i.e., logFC) or pH, was
linear or rather quadratic. ANCOVA was used to assess whether the
categorical variable ‘acidulant’ or ‘type of wash water’ had an impact on
the relationship between ORP and FC. The Tukey post-hoc test was used
on the least square means of the acidulant groups to assess differences
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among groups. For assessing the impact of CLD and COD on the slope of
the ORP-logFC relationship, multilinear regression was done, i.e., ORP
as a function of logFC, CLD (or COD), and logFC x CLD. It could be
assumed that the slope of the ORP-logFC relationship changed with
CLD, if the ANOVA of the regression showed that the interaction term
(logFC x CLD) was significant. Furthermore, ANOVA of the regression
could indicate whether the influence of CLD (or COD) on the ORP was
significant. A significance level of p < 0.05 was used for all the sta-
tistical tests.

The relationship between FC, pH and ORP was modeled using
XLSTAT (Addinsoft). To predict FC, the variables pH, ORP, the second
order terms and the interaction term were considered. Model selection
was done based on stepwise entry of variables (probability for entry:
0.05; for removal: 0.1). Of the 260 collected observations, 210 were
used for developing the model and 50 were randomly chosen for vali-
dating it.

3. Results & discussion
3.1. Log-linear relationship between FC and ORP with accounting for pH

A relationship between ORP and the logarithm of FC in CLD free
water was observed (Fig. 1). This relationship was significantly affected
by water temperature (ANCOVA: p < 0.001). At 4°C, the ORP was
higher than that at 25 °C (Fig. 1). The difference in ORP at 4 and 25°C
decreased with increasing FC, and at about 100 mg/L FC (logFC = 2),
the ORP was virtually equal at both temperatures (Fig. 1). A quadratic
equation was significantly better (R-square change F-test from linear to
quadratic equation: p < 10~ *) suited to describe the relationship be-
tween ORP and logFC than a linear equation for both temperatures
(Fig. 1).

This 1ogFC-ORP relationship is a first major influence on the us-
ability of ORP for estimating free chlorine. Because ORP is so sensitive
to changes in very low FC concentrations, the ORP technology (in
combination with ORP measurements) is effective for determining
endpoints of breakpoint chlorination and quenching (i.e., dechlorina-
tion) of FC during wastewater treatment (Kim and Hensley, 1997; Yu
and Cheng, 2003; Yu, 2004; Yu et al., 2009). On the other hand, be-
cause the sensitivity of the ORP signal for measuring FC decreases with
increasing FC, the ORP technology will lose measuring accuracy when
the applied FC residual increases.

The ORP value for a certain FC residual decreased with increasing
pH (Fig. 2a). Notable is the large influence of pH on the ORP for a
specific FC residual. In fact, the sensitivity of ORP for changes in pH is
of similar order as the sensitivity for logarithmic changes in FC

1000
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0.1 1 10 100 1000
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Fig. 1. ORP as a function of logFC (residual concentration) in deionized water
at pH 6.5 and 4 °C or 25°C.
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Fig. 2. A) ORP of DI water containing FC as a function of pH, at 25°C, B)
prediction quality of the model logFC = f(ORP, ORP?, ORP.pH) in DI water at
25°C, C) predicted FC residual as a function of ORP and pH, in DI water at
25°C.

concentration (Table 1). The logarithmic relationships between ORP
and FC and between ORP and the H' concentration (or otherwise
stated linear relationship between ORP and pH) are predicted by the
Nernst equation, as is the fact that the ORP increases with decreasing
pH (Egs. 1 and 2).

RT red
Eh = Eh0 — — In(——

nF n(oxid) (n
Eh=Eho — RLjp1CL=1

nF  [HOCI[H + ] (2)
Where:
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Table 1
ORP change at different FC residuals in DI water at 25 °C when changing the FC
residual or the pH.

FC (mg/L) ORP change for increase in FC by ORP change for decrease in pH
10 times (mV)’ by 1 (mV)~

0.24 140 93

1.9 105 83

7.5 82 76

15 70 70

60 47 65

* Calculated with the equation as derived from the data in Fig. 1 (ORP =
-1'5).4(10gFC)2 + 135logfC + 738), e.g. 10 times increase in ORP
(FC = 0.24mg/L) = ORP (FC = 2.4mg/L) — ORP (FC = 0.24 mg/L).

** Using the slopes from the plotted curves in Fig. 2A.

Eh = the half-reaction potential, i.e. the ORP,

Ehy = standard half-reaction potential relative to the standard half-
reaction for hydrogen,

R = universal gas constant (1.987 x 10-3 kcal/molL.K),

T = absolute temperature (K),

n = number (equivalent) of electrons transferred,

F = Faraday constant (23.061 kcal/equivalent.mol.V),

Red and oxid are the chemical species on the reduced and oxidized
sides of the half-reaction (White, 2010).

The ORP of the protonated HOCI is considerably higher than that of
OCl~ (Egs. 3 and 4) and the pKa of HOCI is pH 7.5. Below pH 7.5,
HOCI, causing a higher ORP, will be present in a larger abundance and
above pH 7.5, OCl™, causing a lower ORP will be more abundant
(White, 2010).

HOCl + H* + 2¢ — CI- + H,0 E0 = 140V 3)
OCI- + H,0 + 2e~ — CI- + 20H- E0 = 081V 4

where E° is measured against standard hydrogen electrode at con-
centration of 1 mol/L, 1 atmosphere pressure, and 25 °C (White, 2010).

Considering both the relationship between ORP and logFC, and the
influence of pH on the ORP, a model was constructed to predict logFC
as a function of ORP and pH in DI water (Table 2). The model did not
show a systematic bias or difference in slope from the perfect-fit line for
both the calibration and validation observations; the fitted lines to both
sets of observations almost coincided with the perfect-fit line (Fig. 2B).
Using this model the prediction of free chlorine could be visualized,
based on ORP and pH measurement (Fig. 2C).

The pH influence is a second major influence on the usability of ORP
to measure FC. Zhou et al. (2014b) noted a stronger (negative) corre-
lation of ORP with pH than the weak (positive) correlation with FC in
tomato dump tank wash water. Murray et al. (2018) noted no sig-
nificant correlation between the FC and the ORP in fresh-cut iceberg
lettuce wash water. In both these cases, a linear correlation between the
FC and ORP was made. A good linear correlation between FC and ORP
cannot be expected, as the relationship is rather between ORP and the
logarithm of FC. But also, a useful correlation between ORP and FC will
not be found if the pH is not rigorously controlled or is not incorporated
in the ORP terms of the FC model as shown in Table 2. From a practical
standpoint it seems that very rigorous pH control would be of para-
mount importance for controlling FC residual based on ORP measure-
ments.

The results shown so far in this manuscript depict the use of ORP for
FC estimation in an ideal situation, i.e. when the water matrix is devoid
of interfering water matrix constituents. In an actual commercial pro-
duce processing wash situation however, this is not the case.

3.2. ORP is a mixed potential; the water matrix constituents will influence it
and limit its usability

Even though the ORP can be dominated by the presence of a strong
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Table 2
Model for prediction of logFC as a function of ORP and pH at 25°C in DI water.
calibration validation
Intercept ORP ORP? ORP*pH R? RMSE R? RMSE
0.44 = 0.27 —0.015 = 0.008 (1.1 + 0.05)x10°° (8.4 + 0.2)x10* 0.947 0.179 0.935 0.193

100 BSSO Fig. 3. A) Chlorination of iceberg lettuce wash
water (CLD 175 mg/L, COD 822mg/L) at pH
900 6.5 and 4 °C, B) ORP measured in iceberg wash
water as a function of FC residual at pH 6.5 and
10 = 4°C, for different levels of CLD and COD, C)
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oxidizer, the presence of other substances can shift the ORP to some
degree. Three relevant possible influential factors were studied: i) or-
ganics washed from the produce; ii) the influence of the water source;
iii) the used acidulant during processing.

3.2.1. Influence of materials washed from the produce on the ORP

When dosing FC in DI water, no CC is formed because insignificant
amounts of organics or ammonia are present for reaction. On the other
hand, when chlorinating iceberg lettuce wash water, initially there was
a build-up of CC without considerable formation of FC, due to the
consumption of the FC by the wash water organics, more specifically
organic amines (Fig. 3a). When additional FC was dosed, the CC de-
creased because of further oxidation of the chloramines by FC
(Donnermair and Blatchley, 2003; White, 2010; Zhou et al., 2014a).
Fig. 3a shows that the increase in ORP closely followed the increase in
logFC, whereas the changes in CC were not strongly reflected in the
ORP changes. FC has a higher ORP than chloramines formed from
ammonia or organic nitrogen (Singer and Reckhow, 1999; White,
2010). The correlation between ORP and FC (R = 0.63), CC (R =
-0.25), TC (R = 0.45), and the log of these variables, logFC (R = 0.97),
logCC (R = -0.01), and logTC (R = 0.41) indicated that only logFC had
a strong correlation with the ORP in the wash water, which corrobo-
rates with the findings in CLDfree water.

free chlorine (mg/L)

Iceberg lettuce wash water was used to assess the relationship be-
tween ORP and the wash water organics in more detail. Two effects
were observed that are clear with log-linear curves fitted to the data
(Fig. 3b). First, the intercept in the curves (i.e., the ORP for log(FC) = 0
or FC = 1 mg/L) decreased with increasing CLD and COD. In other
words, increasing CLD and COD decreased the ORP. Secondly, the slope
of the ORP versus logFC curves increased with increasing CLD and COD
(ANOVA interaction between logFC and CLD: p < 107 '9). The influ-
ence of CLD or COD on the ORP seemed to decrease with increasing FC,
and the curves converged at around 100 mg/L FC (logFC = 2). In short,
increasing COD or CLD lowered the observed ORP at a certain FC re-
sidual, but this effect decreased with increasing FC residual. Similarly,
for whole produce, i.e., for whole tomatoes washing, a higher CLD re-
sulted in a steeper ORP/FC slope (ANOVA interaction between logFC
and CLD: p = 0.001), yet lower ORP (Fig. 3c). The CLD in wash water
from tomato packing houses is lower than that in the wash water of
fresh-cut produce washing operations, mainly because the amount of
exudate is limited to that leaching from damaged tomatoes compared to
leaching from cut surfaces in fresh-cut produce (Zhou et al., 2014b; Luo
et al., 2018).

In all the fresh-cut wash waters (standardized to a CLD of 175 mg/L
for each wash water, made with DI water), the ORP at a certain FC
concentration was lower than in DI water (ANCOVA (Tukey): p < 10 -4
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Fig. 4. A) ORP as a function of FC residual at pH 6.5 and 25 °C in DI water, tap
water, tomato wash water from tomatoes washed in DI water and from toma-
toes washed in tap water, B) influence of acidulant on the ORP of FC in DI water
at pH 6.5 and 25 °C, C) comparison of ORP as a function of FC residual between
grape tomato wash water (COD = 326 = 6mg/L, pH 6.5 = 0.1, 25 = 2°C)
and packing house tomato wash water (COD = 439 * 130mg/L, pH
6.4 + 0.1,40 = 1°C).

for all waters) (Fig. 3d). At lower FC residuals, the difference in ORP
between DI water and wash water was considerably higher than at
higher FC residuals (approaching 100 mg/L). There were no significant
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differences in ORP among the different fresh-cut produce wash waters
with equal CLD (ANCOVA (Tukey): p > 0.05 for all waters), despite
some differences in COD, mainly the much higher COD of carrot wash
water.

3.2.2. Water source influences the ORP-logFC relationship

Not only do the materials that are introduced during washing in-
fluence the ORP, but also the chemical constituents in the source water
(e.g., tap water or groundwater) that is used during food processing.
The used tap water had a FC residual of 1.8 = 0.1 mg/L, an alkalinity
of 0.052 = 0.003 mmol/L carbonate and 0.247 = 0.006 mmol/L bi-
carbonate, conductivity of 79.8 = 0.9 uS, pHof 9.3 = 0.1, and COD of
43 = 9mg/L. When chlorinating at pH 6.5, 25 °C, the ORP in tap water
was greater than that in DI water (ANCOVA: Tukey: p = 10 ®), but
convergence occurred with increasing FC residual and both waters
converged at around 150 mg/L FC residual (Fig. 4a). A water source has
a certain "poising intensity", which is the baseline ORP of the water
source, determined by the interaction of various water constituents
with the electrodes. Consequently, an ORP set point will be dependent
on the water source (White, 2010). This translates into a “water source
dependent” shift of the ORP. A difference was observed between the
ORP in tomato wash water from tomatoes washed in DI water, and
tomato wash water from tomatoes washed in tap water (Fig. 4a), very
similar to the difference between the ORP in tap water and in DI water.
In other words, the water matrix constituents in the water source (here
tap water) have an effect on the ORP in the chlorinated wash water.
Softening of the water (tap or ground) before use in the washing process
could help reduce the variation in ORP by removing inorganics in the
water source.

3.2.3. The influence of acidulant on the ORP

Several acidulants can be used during fresh produce washing for
controlling pH. The acidulant (HCI, phosphoric acid, T-128 and citric
acid) had a significant effect (ANCOVA: p = 3.10 ~%) on the ORP of the
FC solution (Fig. 4b). When using citric acid, the ORP was higher than
with phosphoric acid and T-128 (Tukey: p < 0.002 in both cases), and
when using HCI, the ORP was higher than with the use of phosphoric
acid (Tukey: p < 0.004), while the other comparisons between acid-
ulants did not result in significant differences. Though significant,
based on the trendlines (Fig. 4b), the difference in ORP due to usage of
HCl instead of H;PO, as acidulant was between 4 and 8 mV in the range
0-100 mg/L FC, which is limited considering the variation observed in
the ORP signal in the present study. On the other hand, the difference
between the citric acid and the other acidulants was 15-20mV in the
range 0-70 mg/L FC, which can be considered problematic.

3.3. Is predicting FC using ORP reliable for produce washing?

Short answer: no. A general target ORP value for all commodities
and situations, or one prediction curve for all commodities to estimate
FC based on ORP and pH is unrealistic. To illustrate this, the ORP was
measured during washing of whole tomatoes in a tomato packing
house. Citric acid was used as acidulant. A collection of data points
from the packinghouse wash water were chosen so that the COD and pH
(COD =438 = 122, pH = 6.4 = 0.1, 40 = 1°C) were similar to that
in the grape tomato wash water (COD = 326 + 6mg/L,pH6.5 = 0.1,
25 * 2°C). The variable CLD could not be used for the packing house
wash water because CLD cannot be measured directly during a washing
process (Van Haute et al., 2018), and as such was not measured at that
time. The ORP in the packing house tomato wash water was at least
30mV higher than the ORP in the grape tomato wash water (Fig. 4¢).
Differences between the wash waters that could have an influence in-
clude: the water source composition, the slightly higher average COD,
the type of tomato, the acidulant (HCl was used in the lab trials, citric
acid in the company), and the water temperature. In addition, because
tomato washing is done with high FC residuals, the sensitivity of ORP to
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changes in FC is low, and as such, the 30 mV or more offset in ORP
observed, has a huge influence. For example, at 920 mV, the grape to-
mato wash water had 170 mg/L FC, but the packing house wash water
had 30 mg/L. In both wash waters however, a trend was observable,
and as such, a relationship between ORP and FC could be made. It is a
different relationship in both wash waters however. Thus, to make the
prediction more accurate, these additional processing conditions that
impact water quality must be considered.

4. Conclusion

During a produce washing process with FC as the water sanitizer,
the ORP is at least dependent on four major variables: FC, T, pH and
water matrix constituents. The water matrix constituents include the
mineral and organic chemical composition of the tap water or ground
water (water source), along with the constitution and amount of sub-
stances introduced with the produce. The ORP increases with the
logarithm of the FC residual. This implies high changes at very low FC
and low changes at higher FC residual, decreasing the sensitivity with
increasing FC. The influence of pH on ORP is quantitatively similar to
the influence of the logarithm of FC, with the ORP increasing when pH
decreases. The water source influences ORP as do the constituents that
enter the water during the washing. In general, for a certain wash
water, an increasing CLD, or amount of COD in the wash water, de-
creased the ORP. As more produce is washed, increasing amounts of
materials are transferred from produce to the wash water, and the in-
crease of some of those compounds further decreases the ORP. The
influence of these factors complicates the relationship between ORP
and FC, and thus limits the usability of the ORP technology for esti-
mating FC in produce wash water. Even as technologies for on-line
direct measurement of FC by DPD methods advance for commercial
produce wash, the extent to which ORP could still be used for certain
operations to reliably predict and meet FC target concentrations will
need to be validated.
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