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We consider the radially expanding sheet formed upon impact of a drop on a surface
of comparable size to that of the drop. A unified self-similar solution for the unsteady
radial thickness profile of the expanding sheet is derived from first principles in the
inviscid limit. This unified functional form reconciles two conflicting theoretical
profiles of sheet thickness proposed in the literature and allows for the collapse on a
single curve direct measurements of sheet thickness profiles reported in the literature
and the detailed measurements conducted herein. We show good agreement between
our proposed unified thickness profile and data from our experiments for a range of
surface-to-drop size ratios. We show that there is an optimal range of surface-to-drop
size ratio for which the hypothesis of inviscid thin sheet expansion in the air holds.
Outside of this optimal range, either insufficient vertical momentum is transferred
to horizontal momentum to form an expanding sheet or viscous effects become too
important to neglect. In this latter regime, the dominant effect of surface friction is
to modify the velocity profile. We elucidate this effect using a Blasius-type boundary
layer model. Finally, we relate the geometry of the drop in its early phase of impact
to the sheet thickness profile in the air. We show that the coefficients of the proposed
unified similarity thickness profile can directly be linked to volume flux conservation
at early times, and to the maximum sheet thickness at the edge of the surface. Our
results thus quantitatively link the fluid history on the surface to the thickness and
velocity profiles of the freely expanding sheet in the air.
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1. Introduction: from impact to sheet expansion

The fragmentation of drops upon impact on surfaces is ubiquitous in nature and
industry. Depending on the relative magnitude of the inertial and viscous to interfacial
forces involved, the impact can result in a drop deposition, a bounce or a splash.
In the latter case, upon collision, the impacting drop crushes and forms a radially
expanding sheet. This sheet, in turn, can produce secondary droplets (e.g. figure 1a).
Understanding the physics governing the impact and fragmentation processes has
significant implications for the control and optimization of a wide range of industrial
operations in lithography (Banine, Koshelev & Swinkels 2011), surface coating (Rein
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FIGURE 1. (Colour online) (a) Expanding sheet and (b) associated schematics.

1993), ink jet printing (Zable 1977) and pesticide spraying (Bergeron et al. 2000).
It is also becoming clear that elucidating the physics governing fluid fragmentation
is also vital to understand, predict and control the transport of pathogens shaping
disease transmission (Bourouiba & Bush 2013; Bourouiba, Dehandschoewercker &
Bush 2014; Gilet & Bourouiba 2014, 2015; Bourouiba 2016; Scharfman et al. 2016).

Despite the increasing attention paid to drop impact on solid surfaces since its
first description by Worthington (1876), a unified predictive theory of impacts is
still missing (Josserand & Thoroddsen 2016). The full description and mathematical
modelling of the impact process from touch down to secondary droplet ejection
requires an understanding of the sheet creation, expansion and destabilization
(figure 1a). Most studies focus on the prediction of the maximum radius of spreading.
One key remaining knowledge gap preventing comprehensive modelling of impact
and prediction of fragmentation is the spatio-temporal thickness profile of the radially
expanding sheet (Yarin 2006; Roisman, Berberovi & Tropea 2009; Josserand &
Thoroddsen 2016). In this paper, we focus on elucidating the unsteady sheet thickness
profile expanding radially in the air from the impact on a surface of comparable size
to the impacting drop. Such a profile is both of fundamental importance (Savart
1833; Worthington 1876; Taylor 1959; Eggers & Villermaux 2008) and of practical
importance to control plant spraying and pathogen transmission (Gilet & Bourouiba
2014, 2015). In particular, we focus on the experimental configuration illustrated
in figure 1, where the impacting drop forms a radially expanding sheet in the air.
This unsteady dynamics is governed by two dimensionless parameters: the Weber
number, We = puédo/a and the Reynolds number, Re = pupdy/i, where uy is the
impacting speed, dp is the impacting droplet diameter, o is the surface tension of
the impacting fluid, p is the density of the fluid and w is its viscosity. We focus our
attention on high Re and We impact regimes. In this regime, two groups proposed
mathematical models of sheet expansion (Rozhkov, Prunet-Foch & Vignes-Adler
2002, 2004; Villermaux & Bossa 2011). The proposed models have many similarities
but also fundamentally differ in the postulated expanding sheet thickness profile: one
group conjectured the thickness profile to be hg(r, f) ~t/r* (Rozhkov et al. 2004) and
the other to be hy(r, t) ~ 1/rt (Villermaux & Bossa 2011), where ¢ is time, and r is
the radial position from the impact point (figure 1). These profiles were not verified
until recently when Vernay, Ramos & Ligoure (2015) provided direct measurements
of the sheet thickness profile. They reported that the sheet thickness appears to follow
the profile hg(r, f) at early times ¢ << t =d,/ry while following the profile hy(r, t) at
later times 7 >> 7; thus suggesting that both profiles are partially correct. Finally, in
all these prior studies, discrepancies emerged on the maximum radius of the sheet.
The discrepancies were attributed to the different experimental conditions used. In
particular, inconsistent choices of surface-to-drop size ratios was noted. We define
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n =d,/dy as the ratio of surface-to-drop diameter. The values of n used in prior
literature ranged from n =1 in Villermaux & Bossa (2011) to n=1, 1.39 in Rozhkov
et al. (2002) and n=1.67 in Vernay et al. (2015). The effect of 1 on the expansion
remains an open question.

In this paper, we have four objectives. First, we return to the governing equations
of motion to revisit the modelling of radially expanding sheet and derive, from first
principles, the self-similar solution governing its expansion in the air. Second, we use
the derived expression to plot the experimental results by Vernay et al. (2015) and
show that the seemingly distinct curves reported therein all collapse onto a master
curve: our derived self-similar solution. Third, we propose a unified functional form
of the sheet thickness Ah(r, f) that allows us to unify the expression for the unsteady
sheet profile for all times and thus reconcile the two proposed theoretical forms,
hg(r, t) and hy(r, t), conjectured in the literature thus far. Fourth, we report our
experimental results of direct and indirect measurements of sheet thickness profiles,
and the direct measurement of the velocity profile within the sheet as a function of
the surface-to-drop size ratio. We show excellent agreement with our proposed profile
over an optimal range of surface-to-drop size ratio and elucidate the optimal range in
light of the boundary layer on the surface. We also provide the physical interpretation
of all the constants in the proposed unified thickness profile and confirm such an
interpretation from multiple methods of measurements of thickness and velocity.
Finally, our results quantitatively link the fluid history on the surface to the thickness
and velocity profiles of the freely expanding sheet in the air.

2. Theoretical background on sheet expansion
2.1. Governing equations and key role of the sheet thickness profile

To understand the impact dynamics and its resulting expansion in the air (figure 1) an
equation governing the sheet radius R(¢) is required. Figure 1() is a schematic of the
expanding sheet from impact of a drop of diameter dy and initial volume £2, showing
the axisymmetric and thin sheet. Each sheet cross-section can be averaged in the
vertical, z, direction. This averaging and slender shape allow us to express the sheet
velocity u(r, ) and thickness h(r, t) profiles as independent of z. Moreover, the entire
rim can be viewed as a control volume. During the expansion, the fluid in the sheet
moves radially away from the rod, and accumulates in the rim (Villermaux & Bossa
2011), which is decelerated by the interfacial forces of the sheet. The radius of the
sheet R(¢) can be described from momentum and volume conservation. However, they
are not sufficient to solve for R(f). The sheet velocity u(r, ) and thickness profiles,
h(r, t), are also required and missing.

Returning to the quasi-two-dimensional momentum equations, the high Re
considered herein allows us to neglect viscous and compressibility effects in the
sheet. Similarly, curvature-induced radial pressure gradients in the sheet are neglected
(Yarin & Weiss 1995), thus leading to

ou u
— — =0, 2.1
ot +u8r 2.1)

which is a first-order quasi-nonlinear partial differential equation that can be written
in characteristic form (Lagrangian description) as

Du_ 0 along th dr (2.2)
—_— = alon € curve — = u, .
Dt & dr
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where D/Dt is the total derivative. First, (2.2) shows that the velocity of a fluid parcel
remains constant along a trajectory dr/df=u. Second, (2.2) shows that the trajectory
dr/dt = u must be a straight line given that the parcel’s velocity is constant. In a
Lagrangian frame following the parcel/particle, we obtain

r=ut+§&, (2.3)

where u and & are the initial velocity and position of the fluid parcel, respectively.
However, u and & are different between particles. Yarin & Weiss (1995) assumed that
the initial velocity of fluid parcels in the expanding sheet is linearly dependent on
their initial position, namely u = b&, thus (2.3) could be re-expressed in a Eulerian
frame as

u(r, t) =

) 24
Py 2.4)
where #, =1/b is a constant corresponding to the time required to form the velocity
profile of the order of the impact time scale T = dy/uy. Since the time scale of the
sheet expansion is much larger than t, 7, can be neglected, thus

u(r,t)=r/t. (2.5)

However, we still do not have the profile for A(r, ). Returning to the continuity
equation for an axisymmetric sheet in cylindrical coordinates, the governing equation
is

oh 0

r— + —(rhu) =0. 2.6

o+ ar( ) (2.6)
Unfortunately, equations (2.4)—(2.6) remain insufficient to derive the thickness profile
of the sheet and no obvious boundary condition can be used to make further progress,
hence limiting the ability to predict the expansion of the sheet R(7).

2.2. Conflicting sheet thickness profiles proposed in the literature
It is due to this major limitation that conjectures on the thickness profile

t 1
hr(r, t) ~ 3 and hy(r, t) ~ P 2.7a,b)

were proposed in the literature. However, no direct measurements of such thickness
were reported until the recent experiments of Vernay et al. (2015). The conjecture of
Rozhkov et al. (2004) was guided by their experimental observations suggesting that
the volume flux ¢, per unit radian in the sheet at a given radial position is constant.
Given that

qs(r, t) =rh(r, Hu(r, t), (2.8)

Rozhkov et al.’s (2004) assumption leads to i ~¢t. Using h(r, t) =1g(r) in (2.6) gives
hg(r, t) ~ t/r’. The profile of Villermaux & Bossa (2011) assumes that the spatial
thickness profile of an unsteady sheet formed upon drop impact is the same as that
of a steady sheet formed from the impact of a continuous jet (Clanet & Villermaux
2002)

2
u(r)=u; and h(r)zg—j,
r

Downloaded from https:/www.cambridge.org/core. MIT Libraries, on 10 Feb 2017 at 02:11:06, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2017.18

(2.9a,b)


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.18
https:/www.cambridge.org/core

514 Y. Wang and L. Bourouiba

0.07 T 0.30 . .
@ s t1=0.59 ms ®) = 1=0.59 ms
0.06F ¢ e t=0.94 ms 1 0.25 B L 3 e t=0.94 ms
\ A
0.05 | — ] ) —a
=% i ;: §?1(9) ﬁz 0201 A =340 ms
0041 = 61— 410 ms 1 ¢ 1=4.10ms
H HT2? 0.15} —= Eggers et al. (2010)
0.03 | —o— Lastakowski
et al. (2014)
0.02} 0.10 — Best it of (3.8)
’ = = Ansatz (3.9)
0.01F} 0.05 ’
0 , , . ) 0 . . X =
1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0
R R/T

FIGURE 2. (Colour online) (a) Reproduction of the measurements of sheet thickness
reported in Vernay et al. (2015); (b) we collapse the data shown in (@) on a single curve
when using the self-similarity solution variables in (3.7) derived in § 3.1 and compare the
collapsed data curve with different empirical expressions of similarity solution proposed
in the literature and with (3.9) derived in this paper.

where u; is the falling jet velocity and d; is the diameter of the impacting jet. Thus, the
authors sought a time-dependent solution in the form A(r, f) =f(¢)/r, which combined
with (2.6) gives hy(r, t) ~ 1/rt. In sum, the two thickness profiles proposed in the
literature differ substantially. However, the findings of Vernay et al. (2015) reproduced
in figure 2(a) suggested that both conjectured profiles are partially correct: hg(r, 1)
holds for early times ¢t < t = dy/ry, while hy(r, t) would hold for later times > t.
It remains difficult to construct the full theory of sheet expansion without more than
these limits and no unified profile was proposed to date in the literature for expanding
sheets in the air. In § 3, we derive a self-similarity solution that allows us to collapse
all the thickness profile data of Vernay et al. (2015) and to develop a unified thickness
profile tested and validated by our experiments in §§ 4-7.

3. Unified self-similar thickness profile for an expanding sheet
3.1. Derivation of the self-similar profile of thickness from the equations of motion

In order to derive the general form of h(r, t), we return to the equations of motion.
Substituting the velocity profile (2.4) into the continuity equation (2.6), we obtain

tah + oh +2h=0 (3.1
PR y— = V. .
ot ar

Using separation of variables we seek a solution in the form A(r, t) =f(¢)g(r), thus,
A T (3.2)
o8

where the prime symbol ' indicates the ordinary derivative of a function with respect
to its corresponding variable. Independence of the variables r and ¢ leads to

Ay and L= 2 (3.3a.b)

g S
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where a is an arbitrary constant. Hence, our basis of solution is of the form

f=

2ta’

1 /r\@
e =r" and h(r, 1) :f(t)g(r):lz(;) . (3.4a—c)

The general solution of A(r, f) is then in the form

=k e (e 2)

We choose the characteristic length scale to be dy and time scale to be 79 =d,/uy and
introduce the dimensionless variables
r h t upt

R=—, H=—, and T=-

=—. (3.6a—c)
d() d() T d()

We obtain the following dimensionless thickness profile for the expanding sheet in

the air:
1 R . R ué r
H=—F(2) wiF (2 ) =2y (%), 3.7)
T? T T d; t

Such a self-similar profile has not been reported for expanding sheets in the air.
In the next section, we assess its ability to collapse prior experimental data. Note
that Roisman et al. (2009) arrived at an analogous profile to the one derived here
when considering impacts on solid surfaces. There, the authors invoked a derivation
in a Lagrangian frame of reference that involved an arbitrary parameter specific to
the dynamics of impacts on solid surfaces. Our derivation here differs from that of
Roisman et al. (2009).

3.2. Collapse of existing experimental data by the self-similar solution and
unified profile
Having obtained a general self-similar profile for the sheet thickness (3.7), we re-plot
the experimental data of Vernay et al. (2015) in the new coordinate system Y = HT?
and X =R/T. Figure 2(b) shows the resulting excellent collapse of all their data onto
one single master curve. Such collapse shows that the similarity solution (3.7) governs
the thickness profile of the sheet expanding in the air. In the context of drop impact
and sheet expansion on solid surfaces, Eggers et al. (2010) first proposed an empirical
expression for the similarity thickness profile F(X) of the sheet in the form

FX) = (3.8)

(1+Cx?)°’
where A =0.27 and C = 0.625 when fitting the profile with the author’s numerical
simulation results. Lastakowski et al. (2014) verified this empirical expression against
experimental data of drop impact on a superheated solid surface where reduced
viscous stresses are expected. They found that the fit worked for A = 0.40 and
C = 0.604. However, the expression (3.8) with the coefficients proposed by Eggers
et al. (2010) and Lastakowski et al. (2014) does not capture the thickness profile
of the sheet expansion in the air obtained by Vernay et al. (2015) as shown in
figure 2(b). Moreover, even when keeping C and A free, the best fit is not successful
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FIGURE 3. (a) Schematic of the experimental set-up. (b) Table of experimental conditions
used: impacting drop diameter d,, associated We and Re, ratio of surface-to-drop size
n =d,/dy, diameter of the solid surface d, and number of repeated experiments N. Note
that for experiments with high Weber number, only 5%-10% of the drops released led
to centred impacts that were kept for the analysis. However, we maintained a uniform
sample size of N =6 impacts per We value. The rod was made of stainless steel with
equilibrium contact angle of approximately 80°.

in capturing the profile. Thus, another profile is needed. In light of the validity of
the profiles hz and hy in asymptotically large and small times, we propose a new
unified analytical functional ansatz F(X) for the sheet expansion in the air, with its
associated thickness profile H(R, T) as

1 : T
F(X)= withHR, T) =

) 3.9
X3+ X2+ a X a3R? + aR?T + a,RT? (3-9)

Clearly, for T <« 1, H(R, T) — T/R®, which is consistent with hg(r, f) by Rozhkov
et al. (2004) and for T > 1, H(R, T) — 1/RT which is consistent with hy(r, t) by
Villermaux & Bossa (2011), thus enabling H(R, T) (3.9) to unify prior proposed
profiles in addition to satisfying the form required for the similarity solution (3.7).
As a first validation for this ansatz, we plot the solution using (3.9) in figure 2(b).
We find an excellent match of the self-similar solution using F(X) (3.9) with the
data of Vernay et al. (2015) (figure 2b). This match was obtained for values of
a, = 18, a, = —24 and a; = 24. Next we evaluate the robustness of (3.9) against
our experimental data and provide a range of validity of the self-similar unified
solution with respect to surface-to-drop size ratio. We will also discuss and validate
the physical meaning of a;, a, and a; in §7.

4. Direct and indirect measurement of sheet thickness and velocity and validation
of the unified sheet thickness profile

We now turn to experiments to assess the robustness of the similarity profile
(3.7) and unified functional form (3.9). Figure 3(a) shows a schematic of the set-up.
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FIGURE 4. (Colour online) (a) Particle tracers (blue dots) detected in the expanding sheet
at a given time. (b) Trajectory formed by the superposition of particle tracers detected
at different time. (c) The trajectories captured by our tracking algorithm are shown to
collapse well on the real trajectory (time lapse) in (b). (d) Time evolution of the radial
position of each particle, showing the conservation of speed along each particle trajectory.
(e) Velocity profile of the expanding sheet measured by particle tracers for surface-to-drop
size ratio n =1.43.

3 1

Distilled water (density p =1.0 x 10* kg m™3, surface tension 0 =72 x 107> N m~!,
viscosity v=1.0 x 107° m? s~!) was used to generate the impacting drops of diameter
dy. The drop diameters used, and their associated We and Re, are summarized in
figure 3(b).

4.1. Direct measurement of the velocity profile in the expanding sheet in the air

In §3, we derived the similarity profile (3.7) from the sheet thickness equation
assuming a velocity profile u(r, t) = r/t in (2.5). We now proceed to verify this
profile. In general, two conventional methods are used to measure the fluid velocity
field: particle image velocimetry (PIV) (Lastakowski et al. 2014) and particle tracking
velocimetry (PTV). For PIV, a high concentration of microparticles is used. The
velocity field is measured by auto- or cross-correlating the intensity distribution
of images over small areas at given positions. This is inherently an Eulerian
framework. For PTV, particles are tracked individually in a Lagrangian framework.
Here, we proceed using PTV given that we expect Lagrangian conservation of
velocity according to (2.2), as discussed in §2.1. We used a small number of particle
tracers in the form of polyethylene microspheres of diameter ~50 wm and density
1.00 + 0.05 g L. Figure 4(a) shows a frame captured via high-speed recordings,
with the spots in the image showing the particle tracers detected by our image
processing algorithm. Superposing the spots for different frames shows the straight
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FIGURE 5. (Colour online) (a) Thickness calibration curve for two different dyes.
(b) Calibration curve of Nigrosin following the Beer—Lambert law of absorption.

lines visualizing the tracer trajectories (figure 4b). Each line in figure 4(c) indicates a
trajectory captured by the tracking algorithm, which collapses very well with the time
lapse of the trajectories. The straight line in figure 4(d) shows that each tracer moves
in the radial direction at constant speed, as expected from (2.3), thus verifying that
(2.2) is indeed governing the dynamics of the sheet for n = 1.43. The intersections
of the straight lines with the y-axis in figure 4(d) are all close to zero, indicating a
back-extrapolated initial position of the parcels at £ ~ 0 in (2.3). Figure 4(e) shows
the good agreement between experimental data and theoretical prediction u = r/z.

4.2. Direct measurement of the thickness profile of the expanding sheet in the air

To measure the sheet thickness, we use the light absorption method (Kim & Kim
2005; Vernay et al. 2015). When light passes through a thin film of dyed liquid, it
is partially absorbed. The absorption is proportional to the thickness of the film; thus
enabling us to measure the thickness. A meticulous calibration is required to obtain
an accurate relation between the intensity and the thickness. We use a method of
calibration analogous to that used in Vernay er al. (2015). Liquid films of known
thicknesses ranging from 10 to 600 pm were obtained by depositing controlled
volumes of dyed liquid between cover slips and imaging through with a uniform
high-luminosity backlight. In this study, we used two dyes: Erioglaucine disodium
salt diluted in de-ionized water at a concentration of 2.5 ¢ L™'; and Nigrosin at a
concentration of 1.2 g L~!. Figure 5 shows the intensity—thickness curve for both
dyes. The curve of Erioglaucine disodium salt is analogous to that obtained in Vernay
et al. (2015, figure 2a therein). However, Nigrosin has a wider range of change of
intensity for a given range of thickness and we find that the intensity response of
Nigrosin matches perfectly with the Beer—Lambert law of absorption:

h=¢€log(l/I), 4.1)

where I is the incoming background light intensity, I is the intensity of the light after
passage through the liquid, / is the sheet thickness and € is the fluid absorptivity. Here,
we find € =185.1 pm. The Beer—Lambert law of absorption revealed for Nigrosin is
of great interest given that it can provide greater precision in thickness measurements
for /Iy < 0.4 than Erioglaucine for concentrations of Nigrosin that do not alter the
surface tension of the water.
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FIGURE 6. (Colour online) (a) The inset shows the thickness profile H as a function
of non-dimensional radius R at different times of expansion for the impact of a drop
of diameter dy = 4.2 mm and the impacting velocity uy = 2.82 m s~' on a rod of
diameter d, =6 mm. The time point graphs collapse on a single curve well and follow
the similarity profile (3.7). (b) The sheet thickness profiles continue to collapse onto
the similarity profile (3.7) for high We numbers. The inset shows the value of three
coefficients in (3.9), showing the robustness of the functional form and the invariance of
the coefficients to changes in We. The coefficients are computed from a group of five
repeated experiments for each We. Note however that each individual experiment follows
very well the similarity profile. The small variability in coefficient values over the samples
of five repeated experiments is shown in the inset.

Figure 6(a) inset shows the dimensionless thickness profile H as a function of non-
dimensional radius R for a range of times throughout expansion from impact of a drop
of diameter dy =4.2 mm on a rod diameter d, =6 mm, corresponding to We = 460.
The graphs collapse on a single curve in the larger figure 6 if re-expressed using the
similarity profile (3.7). Moreover, the functional form (3.9) matches very well with
the data with coefficient values a; =23.2+ 1.8, a, =—38.44+4.2 and a3 =34.2+1.9.
We will discuss further the robustness of these values and their physical interpretation
in following sections. Here, we also test for the robustness to change in impact We.
In particular, figure 6(b) shows that the sheet thickness continues to follow (3.7) well
when changing impact We. We also find that the coefficient values of a;, a;, a; are
invariant to the change in We as clearly shown in the inset of figure 6(b).

4.3. Indirect measurement of the thickness profile of the expanding sheet in the air

Apart from the direct measurement of the previous section, we implemented an
alternative method of thickness measurement using the cumulative fluid volume £2; of
the sheet emanating from the rod surface into the air. In theory, the relation between
the sheet volume flux per unit radian g,(r, ) and the thickness profile h(r, t) is derived
as (2.8). By introducing the volume flux scale as diug, we define the dimensionless
volume flux per unit radian to be Q.(R, T). Using (3.9), O, can be expressed as

R
a3R2 + azRT + (Zsz ’

O;R, T) = (4.2)

Non-dimensionalized by the initial drop volume £2, = nd;/6, the dimensionless
cumulative volume $2, = £2,/§2, emanating from the rod into the air can be expressed
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FIGURE 7. (Colour online) (a) From drop impact to fragmentation of the expanding sheet.
The insets show the region in which the fluid is tracked to calculate Q;. Scale bar is 3
mm. (b) Time evolution of dimensionless cumulative fluid volume 2, = 2, /82, transferred
to the expanding sheet for different We and impacting drop sizes d; (inset). Here, T =t/t,
with touch-down at T=0 and n=d,/dy=1.43.

in terms of (3.9) as

2 —/T12Q (R T)dT—/T A (43)
s — " s\U\d - 7 a3R§+a2RdT+a1T2 ) .

where T is the dimensionless time when the sheet first reaches the edge of the rod
and R, is the dimensionless radial position of the surface edge R, =d,/2dy=n/2.
Experimentally, we developed an image processing method to measure the time
evolution of the cumulative volume 2, above the rod. Figure 7(a) shows the sequence
of events from drop touch down to expansion viewed from the side. The insets in
figure 7(a) show examples of processed images used to measure the volume change

in the box above the rod, which corresponds to the volume of fluid 2, remaining on

the surface. The cumulative volume Qs transmitted into the air can then be calculated
using §2, = §£2p — §2,, in dimensionless form, 2, =1 — £2,, where £2, = §2,/52,.

For a fixed surface-to-drop size ratio n = d,/d;, we conducted experiments for
different Weber numbers (see table in figure 3b). Figure 7(b) shows the normalized
time evolution of the cumulative volume $2; for three We. The experimental results
of £2, collapse very well for all We considered, thus, the physics governing the sheet
profile is independent of We for a fixed n value. This is consistent with the theory
in §§ 2 and 3 where surface tension is not involved. We also test for the robustness
of the results against changes in drop size d,. Figure 7(b) inset confirms the collapse
of §2, for a given n. In sum, equation (3.9) is in excellent agreement with our
experimental data for a range of We and drop sizes. The value of the coefficients
obtained for the best match between the experimental data and the ansatz (4.3) is
a;=244+1.9, a, =—-38.1 £3.5 and a; =35.2 £ 3.1, which is the same as obtained
by the direct measurement (§4.2) for a surface-to-drop size ratio n = 1.43. In the
next section, we evaluate if the match changes with a larger range of surface-to-drop
size ratios 7.

5. Effect of surface-to-drop size ratio on sheet dynamics
5.1. Effect of surface-to-drop size ratio on the sheet velocity profile

Having confirmed the independence of the self-similar thickness profile from Weber
number and drop size dy, we now fix We and dy and focus on the effect of
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FIGURE 8. (Colour online) (a) Sheet expansion from impact on surfaces of different
surface-to-drop size ratio 1. The lower graph in each panel shows the maximum radial
extension of the sheet with T =1¢/t where 7 is the impact time scale, T. = ¢/t. where
T, =+/pS2y/mo is the capillary time scale. Scale bar is 3 mm. (b) and (d) Time evolution
of the cumulative sheet volume £2; for different n and the corresponding match with
(3.9). (¢) Dimensionless fluid volume remaining on the surface £2; and its corresponding
thickness H (inset) discussed in § 6.

surface-to-drop size ratio n = d,/d, (figure 1). Figure 8(a) shows impacts over
surfaces with 1 values ranging from 0.93 to 2.38 (see table in figure 3b). There, a
clear effect of n on the angle of the sheet to the horizontal can be noted qualitatively.
For the small value of n=0.93 and 1.22, the drop, upon impact, is deformed by the
rod to form an umbrella-shaped sheet, instead of expanding into a horizontal sheet.
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FIGURE 9. (Colour online) (a—d) Velocity profile of the expanding sheet measured by
particle tracers for different surface-to-drop size ratios 7. (e) Comparison of the velocity
profile for all n values.

Figure 8 shows that the vertical displacement of the sheet edge is equivalent to (or
even larger than) the horizontal one. Such drop impact is due to the small surface
area of the rod compared to the radius of the drop; leading to parts of the drop
continuing to fall on the edge of the rod. In other words, the vertical momentum of
the drop cannot be fully transferred to horizontal momentum and the sheet cannot be
well described by the one-dimensional Euler equation (2.1). Note that this quantitative
effect of the surface-to-drop size ratio on the angle of the sheet is investigated outside
of the scope of this paper. In addition to the lack of horizontality of the sheet, we
cannot use light absorption since the large vertical displacement moves the sheet out
of the focus plane required for accurate measurement. For n > 1.43, we can however
proceed and quantify accurately the effect of increasing n on both sheet velocity
u(r, t) and thickness h(r, t) profiles as described in §4.

Figure 9(a—e) show the velocity profile obtained by PTV (see §4.1) for different
n. As n increases, the measured sheet velocity profile deviates downward from the
theoretical prediction (2.4). In other word, the velocity decreases with increasing 7.
Note that the tracking of the particles accounted for the angle of the sheet with
the horizontal, so the decrease in velocity is not due to an artefact in the tracking.
Figure 10(a) shows the time evolution of the radial position of each particle tracer in
the expanding sheet for a surface-to-drop size ratio of n=2.38. This is the Lagrangian
representation of the velocity of each tracer in the film. We clearly confirm that once
in the air, each tracer moves at a constant speed along its trajectory. The same
result is found for all other n values examined. In other words, the Lagrangian
conservation of velocity in the expanding sheet still holds for all . However, when
leaving the rod, the velocity profile deviates from the inviscid theoretical prediction
as the surface-to-drop size ratio 1 increases (see figures 9a—e and 10a). This is well
captured when back extrapolating the initial position of the particles on the rod & in
(2.3) for different n values. Clearly the values are not zero and increase with 1 as
shown in figure 10(b).
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FIGURE 10. (Colour online) (a) Comparison of the measured position of the particle
tracers in the expanding sheet with the theoretical inviscid expected expression (2.3) for
the larger surface-to-drop size ratios n =2.38. Clearly the velocities are constant when the
particles are travelling in the expanding sheet in the air (red part of the graph). However,
the back-extrapolated origin & values in (2.3) do not have a clear relation with velocity,
showing a breakdown of the inviscid approximation of the velocity field for this larger
surface-to-drop size ratio. (b) Experimentally measured £ (mean and standard deviation)
values in (2.3) are shown for the full range of surface-to-drop size ratios 1, showing the
increasing influence of the history of the fluid on the surface on the velocity profile of
the expanding sheet exiting the rod to expand in the air. §, is the mean value and & is
the standard deviation of & for all the particles in one experiment.

As discussed in §2.1, Yarin & Weiss (1995) proposed that the initial position
of a fluid particle & is linearly proportional to its initial velocity, namely, & = u/b.
Figure 10(a) shows the experimental data of & and u from different particle tracers
for n=2.38. No clear relation can be claimed between £ and u, which might be due
to the sophisticated dynamics of drop impact on surfaces at early times. However, in
order to capture the leading-order effect of n on &, we take the mean value &, of
& of all the particle tracers for the same 7. A clear relation of &, with 1 is shown
in figure 10(b). The increase of &, with n can be explained by the viscous boundary
layer, showing the increasing influence of the history of the fluid on the surface on
the velocity profile of the expanding sheet exiting the rod to expand in the air. In
§ 6 we will return to this point to elucidate this effect in the context of the boundary
layer formed on the solid surface prior to the fluid expansion in the air.

5.2. Effect of surface-to-drop size ratio on the sheet thickness profile

Figure 11(a—e) show the thickness profile of the sheet obtained by light absorption
for different n. As n increases, the sheet thickness at different times deviates from a
single curve, implying that the similarity solution (3.9) is violated at large n values.
As seen in the previous section, based on PTV, the velocity of the fluid particles in
the expanding sheet is u = (r — &) /t, where u and & are the initial conditions of each
particle. Although no clear relation is obtained between u and & (figure 10a inset), the
mean value &, of & and its standard deviation & for all the particles in one video is
found to increase with n (figure 10b). The increase of &,, indicates that the velocity of
fluid particles decreases further away from its theoretical expected value. The increase
of & indicates the unpredictability of the initial velocity of the fluid particles within
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FIGURE 11. (Colour online) (a—e) Comparison of the direct and indirect measurements
of thickness profile and the theoretical similarity thickness profiles for different n values.
The coefficients a;, a, and a3 obtained from (3.9) show a relative invariance with n when
correction to the change in the velocity profile, discussed in § 5.1, is applied. The deviation
of the measured thickness from a collapsed single curve increases with n. The circled
areas on panels (a—e) are magnified in the insets showing the bump in thickness also
shown directly in panel (g). The change in the location of the bump region with n is
quantified in panel (k).

the sheet, reflecting that the very early dynamics cannot be expressed explicitly with
a similarity solution, particularly as n increases. Indeed, we find that as 75 increases,
the measured thickness profile has an increasingly poor collapse onto a single curve,
as shown in figure 11(a—e).

However, although the measured sheet thickness does not strictly collapse on a
single curve for larger n, the ansatz (3.9) can still, to a large extent, match with the
experimental data, and describe the evolution of the sheet thickness profile once the
correction in velocity profile is included. We compared the coefficients in (3.9) from
best match for different n values and found that the three coefficients also remain
constant with n as shown in figure 11(g). The standard deviation of each coefficient
for the same 5 is equivalent to the derivation of its mean between different 7,
indicating that the effect of the surface-to-drop size ratio n on the thickness is not
dominant per say, but mostly eroding the self-similarity of the velocity filed itself.

To verify further this result, we compare the direct and indirect measurements
using the cumulative volume $£2; of the fluid emanating from the rod. Figure 8(b)
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and (d) show the time evolution of £2; for different n values. The different delays in
onset of §2, growth reflect the different travel times for the fluid to reach the edge of
the rod. The experimental results show that the volume growth rate of 2, decreases
with 7, which is in agreement with the data of sheet velocity decrease with n. As
n increases, the velocity profile can be approximately expressed by u = (r — §,)/t,
while the thickness profile A(r, ), though not collapsing strictly on a curve, still can
be described by ansatz (3.9) with mostly invariant coefficients. Using (2.8) and (3.9),
the cumulative volume £2; for large n can be modified to read

T 12(R, — &,
sz;:/ . Ra=&) _qr, (5.1)
1, @Ry 4+ a;R,T + a,T?

0

Using the values of &, from figure 10(a) and the three coefficients a,, a,, a; from
figure 11(f), the time evolution of £2; is estimated using (5.1). Figure 8(d) shows that
the time evolution of £2; matches well with the experimental data for all different n
after this correction is applied. This result shows that the decrease in the growth rate
of the volume £2; with 7 is primarily driven by the lower velocity of the fluid reaching
the edge of the larger rods.

Another interesting phenomenon discovered during the experimental analysis is
that a ‘bump’ (local thick region) exists around the outer edge of the unsteady
expanding sheet (preceding the rim position). The bump can be directly observed
from the snapshots shown in figure 11(g) when the sheet reaches its maximum radial
extension, where a lighter region appears. We performed a preliminary quantification
of this transition region and measured its radial position / from the rod edge r, at the
time of maximum sheet extension. Figure 11(#) shows this position / normalized by
the maximum sheet radius 7, for different n. The bump is located at approximately
90 % of the total sheet radius. For large n, the region between the ‘bump’ and the
rim surrounding the sheet is where we observe large deviation between the measured
sheet thickness and similarity profile. This region is also circled in figures 11(a—e).
A more detailed study of this bump is out of the scope of the present study, and will
be a subject of future work.

6. Surface viscous boundary layer and energy dissipation

In the present section we will rationalize the values of £ discussed in §5.1 by
examining the effect of dissipation on the surface via boundary layer formation. We
start by verifying that the thickness of the minimum volume of fluid remaining on
the rod surface is compatible with a simple model of the boundary layer on the
surface. Figure 8(b) shows the time evolution of the sheet cumulative volume 2 for
n = 1 obtained from analysis of the crushing volume above the surfaces used, such
as those shown in figure 8(a). The §2; curves all grow and saturate below £2, = 1.
This upper bound supports the accuracy of our image processing and method by
satisfying conservation of volume $2; < £2,. The £2; curves reach different saturation
levels (figure 8b), reflecting that different fluid volumes remain on the surface for
different n values as shown in figure 8(c). In fact, the residual volume £2, on the
surface increases with 7. We measure 2, when the sheet in the air reaches its
maximum extension to ensure minimal effect of fluid retraction from capillary forces
and directly quantify the volume 2, of fluid remaining on the surfaces. Figure 8(c)
inset shows that the average fluid layer thickness on the surfaces is constant for all
surface-to-drop size ratios 1. Thus, £2, is expected to be proportional to the area of
the surface d* ~ n?, which is confirmed in figure 8(c).
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We now show that this thickness is in fact governed by the viscous boundary
layer. By analogy with the Blasius flat-plate profile for a steady radially expanding
flow (Watson 1964), the thickness of the boundary layer, defined at the distance
at which the inner velocity is equal to 99% of the external imposed velocity,
is 899 = 2.854/vr/U. The displacement thickness, defined as the distance over
which the outer flow streamlines are displaced due to the boundary Ilayer, is
& = fooo(l —u/U)dy = 0.99/vr/U, where U is the velocity of the external flow,
which, in our case, is given by (2.4), U =r/t, thus,

S99 =2.854/vt and 8* =0.994/vt. (6.1a,b)

For water, v = 1.0 x 107® (m? s7'), the sheet reaches its maximum radius at
time T =~ 5.5 ms (figure 8a) at which point the boundary layer thicknesses are
899 = 0.213 mm and §* = 0.074 mm, corresponding to dimensionless thicknesses
Hgg = 899/dy =0.0496 and H* =0.0173, respectively. Figure 8(c) inset shows that our
experimentally measured residual fluid thickness on the surfaces is independent of
n and is consistent with (6.1a,b) with values of the same order of magnitude and
between Hg and H*, and is captured in the form of (6.1a,b) by

Sexp = 1.85+/v1. (6.2)

After confirming the existence of the viscous boundary layer and that a Blasius-type
model captures well our data, we now estimate the viscous dissipation induced by
such a layer. In theory, the rate of viscous dissipation can be expressed as

D /2 aV withey =~ (24 4 0 (6.3)
g ei'ei' W1 ei' = — ) .
v Heie ! 2 Bx,« 8Xj

where u; is the component of velocity in direction i and e; is the i, j component of
strain rate tensor. In our problem. the expanding sheet is mostly radial, namely u =
ue,. Within the boundary layer, u = u(r, z, t), where z is the vertical coordinate value.
Scaling analysis using drop size dp and velocity u, gives the scaling of the thickness
of the boundary layer as § ~ /vt, where t = dy/u, is the time scale. For a water
drop with initial conditions listed in figure 3(b), § <K dy, thus,

ou  ug uy Ju
~ ~

- —. 6.4
or dy 5 0z 64

The rate of dissipation within the boundary layer can then be simplified to

du\’ e r\’
D(t)%/u — dV"tf/ w| — | 2nr,dr, (6.5)
1% 0z 0 8o

where &y is the characteristic boundary layer thickness. Here, from the experimental
result (6.2), we choose 8y = ey = 1.85/vt. r, is the radius of the rod r, when the
expanding sheet extends beyond the edge of the rod and is otherwise the radius of the
sheet. Figure 12(a) shows the time evolution of the dissipation Ep due to the boundary
layer for different n values, which is estimated by

Ep(t) = / D(r) dr. (6.6)
0
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FIGURE 12. (Colour online) (a) Time evolution of the theoretically estimated viscous
dissipation on the rod for different n. The dissipation Ep is non-dimensionalized by the
initial kinetic energy of the falling drop E;. The inset shows the limit value of E, for
different 7. (b) Experimental measurement of the total kinetic energy E¢ of the fluid
emanating from the edge of the rod for different n, non-dimensionalized by E;. The data
are in good agreement with the prediction based on the boundary layer discussed in § 6.

The dissipation Ep is non-dimensionalized by the initial kinetic energy of the falling
drop E, = p§2ou}/2. Since the external velocity profile u=r/t is inversely proportional
to time, we expect the total dissipation to reach a limiting value.

We expect the energy loss due to viscous dissipation to decrease the velocity of
the fluid elements leaving the rod surface and, in fact, this is what we observed and
discussed in §5.1. In theory, the velocity of the fluid particle at the edge of the rod
is given by (2.5) uy; =r,/t, where r, is the radius of the rod. However, we measured
g = (rq — &,)/t, where &, is the mean value of the back-extrapolated initial position
of the particle tracers discussed in §5.1. Since the relations between &, and n are
shown in figure 10(b), the cumulative kinetic energy of the fluid passing through the
edge of the rod up to a time ¢ can be estimated as

t 1 t
El(1) = / 510 2mq(ra, Du(rg, 1> dr = / prergh(ra, Du(rg, 1)° dt. (6.7)
0 0

Based on energy conservation in absence of viscosity (u; =r,/t), we have E{(c0) =Ej,
where E, = p$2ou}/2 is the initial Kinetic energy of the falling drop. As discussed
in §5, the rod size and associated viscous effect is mostly limited to changing the
velocity rather than the sheet thickness profile. Thus, correcting for this effect as was
done in (5.1), the experimental value of E{’;/Ek can be simplified as

E{(c0) E{(c0) _ ( —sm>3

E.  El(c0) - rq ©5)

Figure 12(b) shows the experimental measurement of E{/E; with increasing n. The
direct measurement is in good agreement with the theoretical prediction 1 — Ep(c0)/E}
for different n, where Ep(0c0) is the total dissipation shown in figure 12(a) inset. This
verifies that the decrease of the velocity field u(r, t) = (r — §,,)/t for large n is well
captured by our proposed Blasius-type boundary layer dissipation on the surface
preceding the flow over the edge of the rod.
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7. Physical meaning of ansatz F(X) and associated values of aj,a> and a3

We now return to the proposed ansatz (3.9) to rationalize its form and the physical
meaning of its coefficients. We focus herein on the ideal case of n=1.43 where the
sheet expands horizontally and the viscous effects of the rod are minimal. For this
configuration u =r/t remains true in the sheet (figure 4e). Thus, the similarity profile
(3.5) can be strictly derived from continuity (2.6). Based on our prior analysis, the
fluid dynamics in the air is well captured by the Euler equation and the continuity
equation. The dynamics of the crushing drop on the surface would provide the
missing boundary and initial conditions to this problem. However, the crushing
dynamics on the rod is a priori too complex and remains an open problem. Two
recent studies examined the very early dynamics of tip of lamella formation at impact
(Thoroddsen, Takehara & Etoh 2012; Riboux & Gordillo 2014) when the contact is
a very small fraction of the drop radius. However, a time gap remains between
such early dynamics (T~ O(0.1)) and what we mean in the present study by °‘early’
dynamics (0(0.1) € T « O(1)). Namely, we assume that a sheet has already emerged
throughout the reminder of our discussion. Starting from this simple assumption, we
now attempt to simplify the physical picture to connect the early dynamics of drop
deformation on the surface to the subsequent change in its sheet thickness profile in
the air. Next, we show that our simplified proposed model of the crushing drop allows
to rationalize the physical interpretation of the coefficients a;, @, and a; in (3.9).

7.1. Early dynamics of crushing: infinite source condition prescribing a;

The effect of the crushing dynamics on the sheet expansion in the air can be modelled
as a boundary condition to the sheet expanding in the air. For example, the evolution
of the sheet thickness at the edge of the rod h,(t) = h(ry, t) or Hy(T) = ¥(T) in
non-dimensional form. Here, ¥ (T) is an arbitrary function only varying with time. Its
form is prescribed by the crushing dynamics occurring on the rod. Using the similarity
profile (3.5), (2.8) and H,(T) = H(R,, T), the full temporal and spatial profile of the
sheet thickness H(R, T) can be related to ¥ (T) by

R} T
HR.T)="5¥ (RdR> . (7.1)

Recall that in §4 we already verified that the coefficients determined by the direct
measurement of the sheet thickness are equal to those determined by the cumulative
volume leaving the rod §2 for n values low enough to neglect viscous effects. This
match is another confirmation that the boundary condition at the edge is critical in
shaping the subsequent thickness evolution of the expanding sheet in the air.
Therefore, the key to rationalizing the expression of ansatz (3.9) for the sheet
thickness profile is to understand its boundary condition. Figure 13(a) shows the
schematic diagram of the drop impact phenomenon at the early time ¢ << t = dy/up.
At early times, the expanding sheet is growing at the bottom of the drop (as well
documented in prior work such as Thoroddsen et al. 2012) and the sheet volume is
much smaller than that of the deforming drop. In this limit, we assume that the drop
behaves like an infinite source supporting the growth of the sheet. In addition, at this
early time, the drop had just touched the rod surface, thus, we also assume that the
velocity of the fluid remains uniformly uy. Simplifying this geometry, we consider a
cylindrical shape with radius r. of same total volume as that of the original drop and
with the same height as that of the drop, leading to r. = +/2/3ry. Choosing a control
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FIGURE 13. (Colour online) (a) Schematic of drop geometry on the rod surface at early
time and () at late time. (¢) Experimental data of the time evolution of the sheet thickness
at the edge of the rod for n=1.43.

volume around the cylinder, volume conservation provides the evolution of the sheet
thickness A.(t) = h(r., t) as

t
2nr.u(re, Hh.(t) = J'tr?uo == h.(t)= % or H(T)=T/2, (7.2)
where u(r., t) =r./t and H. = h./d,. Using the boundary conditions (7.2), (3.6a—c)

and (7.1), and R, =r./dy, the thickness profile of the entire sheet can be expressed in
dimensionless form as

H(R T)—RzH R d —RiT (7.3)

’ - R2 c CR - 2R3 ’ .
which is analogous to the profile proposed by Rozhkov et al. (2002) or the early time
limit of (3.9) with limy_o H(R, T) = T/a3R®; thus, a3 =2/R>.

7.2. Advanced time dynamics of crushing: boundary conditions at the edge of the
rod prescribing a; and a,

As time advances, the finite volume of the drop starts to matter. The drop can no
longer provide constant mass flux to the sheet. At this later time 7 > t, the shape
of the drop is deformed to have a smooth connection with the expansion sheet, as
illustrated in our schematic figure 13(b). Here, choosing the control volume with its
boundary at the edge of the rod, volume conservation leads to

dV,
2507 gu(ry, Dhy(r) = —d—f, (7.4)

where V; is the volume of the fluid on the rod. Assuming that the height of the fluid
on the rod is hy(r, t) (see figure 13b), the mean fluid thickness on the rod is

Td
/ 2mrhy(r, t) dr
0

2
ry

h,(2) = , (7.5)
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and we can simplify (7.4) to
h,(t da,,
Jhat) __dh,
t dr
At this later time dynamics, fluid continues to be transferred from the drop to the
sheet, and so we expect that h, () and h,(f) both decrease with time. We now go

further and assume that A, and h, are proportional to each other with £, () = chy(?).
Using this assumption, the solution to (7.6) is reduced to

(7.6)

1
t2/c :

ha 7.7)
In the extreme (or large time) case of a flat fluid surface on the rod (see figure 13b)
we have h; = h,, = hy, thus ¢ =1 and hy(t) ~ 1/#*. Combining (7.1) and (3.6a—c), the
dimensionless thickness profile of the entire sheet then becomes

1
HR,T)~ T2 (7.8)

which is a profile proposed by Yarin & Weiss (1995) in the context of drop impacts
on solid surfaces. Physically, when the volume of fluid on the rod approaches zero, the
thickness h, of the sheet at r, can be considered equal to the mean thickness #,, on the
rod. Although promising, our experimental results and those of Vernay et al. (2015)
do not support this physical picture. In fact, we reported a sheet thickness at late times
t > 1 approaching 1/T, rather than 1/7%. Within our range of assumptions above,
this would suggest that 4, = hj is never reached during sheet expansion. Instead, our
experiments support a late time h,(¢) =1/¢, leading to ¢ =2. In this case, using (7.1),
the full sheet thickness profile is

1

HR,T) R (7.9)
Villermaux & Bossa (2011) proposed this profile based on the assumption that the
spatial profile of the sheet would be equal to that of the steady-state sheet profile
formed by the impact of a continuous liquid jet on a small surface. Next, we propose
a complementary physical interpretation related to the drop geometry on the surface.
We have already discussed that within the framework of our physical representation
of drop crushing at later times (figure 13b), the sheet thickness at the edge of the
rod is 1/t¢ and our experiments give ¢ = 2. This implies that the mean thickness
h,, of fluid on the rod is approximately twice that of the sheet h, at the edge of
the rod, hence, relating the functional form to a simplified drop geometry on the rod.
Recall that at the edge of the rod R,, the non-dimensional sheet thickness H,(T) ~T
increases with time when T <« 1, while H,(T) ~ 1/T decreases with time when T > 1.

Such non-monotonic evolution of H,(T) is described well by

Hy(T)= (7.10)

by + b, T+ b, T*
Combining (7.10) and (7.1), we re-express the ansatz (3.9) with coefficients a; =
bs/R3, ay=b,/R? and a, =b,/R,;. We already determined that a; is governed by (7.2)

in §7.1. We now show how a, and a; can be prescribed by the physics of the sheet
formation at the edge of the rod.
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Given that H,(T) first increases and then decreases, it has one maximum H,(max)
at a time T,,,., which can be determined by equating to zero the derivative of (7.10):

Hd(max) = 1/(2 Vv blb3 + b2) when Tmax =V b3/bl- (711)
Consider
1
Bi=+\b3/bi =Tyu, Po=2\/bibs+b2= . B3=bs, (7.12a—c)
d(max)

used to re-arrange (7.10) into

H,(T)= : . (7.13)

Bs <l—ﬁ> + B2

VT B
Using (7.1), the ansatz (3.9) can also be re-written as

1

HR,T)= 5 , (7.14)
/R /RT
o3 ( — — > +O{2R2
T (04]
with T 1
Y R S S S (7.15a—c)
R, Ry R;  Higmao R Ry
and the relation with a;, a, and a3 is then
o = @, a2:2m+a2, o3 =ds. (716&—6)
a

Therefore, o3 = a;z remains prescribed by the early time dynamics of (7.2) in §7.1,
while a, and «; are directly related to the maximum sheet thickness Hygu.y at the
edge of the rod R, reached at time 7.

7.3. Direct verification of the physical interpretation of a,, a, and aj

Concerning a;, we established herein and in § 7.1 that a3 =a3; = 2/R§ =29.4, which is
close to the experimental value we obtained to be a3 =34.3 from the match between
direct and indirect thickness measurements in §4 and the functional form (3.9) for
n = 1.43. This match supports that at the early time of impact (f < #.), a constant
mass flux gy = mr’u, is transferred from the drop into the sheet at r=r. and provides
a simple geometrical representation of this regime (illustration in figure 13a).
Concerning a; and a,, it is more difficult to derive exactly T, and H;guy from
theory given the need for a full and detailed estimation of drop deformation during
crushing, which remains an open problem. However, we can still go further and
examine the validity of our proposed physical analogy directly using our experimental
results. Our experiments allow us to measure directly 7)., and H,u.. at the edge of
the rod (e.g. from side view). For n =1.43, we find 7,,,, = 0.86 and H;u. = 0.106
(see figure 13b). Using (7.16a—c), these values lead to oy = 1.20 and o, = 18.2. By
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comparison, the values obtained in § 5 from the match between the measurement of
thickness of the entire sheet in the air and ansatz (3.9) are o; = 1.21 and a, =17.8.
These values are in excellent agreement with the values obtained from the boundary
condition at the edge of the rod via T,, and Hjgay. In summary, the match of
values for a;, a, and a; between prediction and experiments supports our proposed
physical interpretation of the coefficients in (3.9) and provide a way to connect the
crushing dynamics of the drop on the surface to the expanding sheet in the air via a
simplified physical picture of the process spanning early to late times.

8. Conclusion

In conclusion, we have studied the expanding sheet formed upon impact of a drop
on a surface of comparable size to that of the drop. We derived a unified self-similar
solution for the unsteady inviscid radial thickness profile of the expanding sheet
from first principles. This profile allows to collapse on a single curve the direct
measurements of sheet thickness profile for impacts on targets reported in the
literature and those conducted in this study. We also directly measured and verified
the thickness and velocity profiles of the expanding sheet in the air for a range of
surface-to-drop size ratios and compared them to the inviscid profiles expected from
inviscid theory. We proposed and validated a unified functional form (3.9) governing
the unsteady inviscid sheet thickness profile which connects and reconciles the two
conflicting thickness profiles proposed in the literature thus far. We showed that such
a profile is independent of the change of Weber number and drop size and that
it is robust and highly reproducible for surface-to-drop size ratios 1.43 < n < 1.90.
Outside of the optimal range of surface-to-drop size ratios, for n < 1.43, insufficient
horizontal momentum is transferred to form a thin radially expanding sheet. While for
n > 1.90, the history of the fluid on the solid starts affecting the velocity profile of
the sheet entering the air. In particular, the velocity of the fluid parcels entering the
air decreases as 7 increases and eventually no longer follows a similarity profile (2.5).
We quantified this effect using a Blasius-type boundary layer model and its associated
energy dissipation on the surface. The model captured well the observed change in
the velocity of the sheet entering the air as a function of the surface-to-drop size
ratio; hence quantifying and rationalizing our experimental results.

We also proposed a physical picture allowing to link the early geometry of
deformation of the drop on the surface to the dynamics of the sheet entering the air.
The proposed simplified physical picture allows us to rationalize the physical meaning
of the three coefficients of the unified functional form (3.9) governing the unsteady
inviscid sheet thickness profile. We find that one coefficient is directly linked to the
early time volume flux conservation when the sheet thickness is still negligible in
comparison with the drop size. The two other coefficients can be directly expressed
as a function of the maximum thickness of the sheet at the edge of the finite surface,
which can be easily measured. Our proposed simplified physical picture thus links
the drop geometry at early times with the boundary condition of the expanding sheet
in the air. This link will allow future studies to determine the full spatio-temporal
evolution of sheet thickness by measuring thickness at one single location and one
single time.

We also report two interesting new phenomena. First, the angle of the sheet to the
horizontal appears to depend on the surface-to-drop size ratio. Second, a transition
region in the thickness of the outer edge of the sheet is increasingly prominent as
the surface-to-drop ratio increases. These observations will be subjects of further
investigations.
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Our findings also allow us to explain, in part, the discrepancies between prior
studies of drop impacts on small surfaces, which used inconsistent surface-to-drop
size ratios and resulted in disagreements in the maximum sheet radial expansion, for
example. Finally, the unified sheet thickness profile derived and validated herein opens
the door to revisit the theory of unsteady fluid impacts and fragmentation on finite
surfaces. This problem remains ubiquitous and important for a range of applications
in surface coating, spraying and pathogen transport from leaves and surfaces. The
latter is our ongoing research focus.
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